The My Delta Pi webstore



Back to main menu


Chemistry and scientific hobby equipment  

Welcome to this online presentation of hobby chemistry kits and science kits. Pleace click on a banner or link to learn more or to buy. The kits presented here are only examples. By clicking at any product link, you get into online stores with a lot more science hobby products and other hobby products than those presented at this page. At the nottom of this page there is some general information about chemistry and physics.


Good stores for hoby science items

Chemistry kits

Science kits - physics, technology, biology, astronomy, metaorology

Other hobby items

About chemistry and physics


Good online hobby science stores  

Trendtime Toys - science kits, RC models and other hobby items - This is a general hobby store where you can find chemistry kits and other science kits among other types of hobby items - physics kits, mechanics kits, biology kits, electronic sets. You can also find RC models of all types and airsoft guns in this store. The store has hobby products for all age groups, from small kids to adult persons.

Trend Times Toy Store


HobbyTron - a general hobby store for science kits, modelling, electroncis and much more- Hobbytron is a general hobby store where you can find chemistry sets, physics sets, electronic sets, science kits, RC models and airsoft guns.  It is exceptionally well equipped in the fileds elctronic building kits and electronic components.


Imaginova - All types of hobby science equipment: Chemistry, atronomy, biology, meteorology, electronics, computing, automatation, physics and more.

Live Science Store..Where Curiosity Comes To Life!

Up to top


Chemistry hobby kits and chemistry kits for learning  

Chemistry Kit W/75 Science Experiments Is Great For Beginner To 

Intermediate Scientists

Chemistry Kit W/75 Science Experiments Is Great For Beginner To Intermediate Scientists

Chemistry Kit W/75 Science Experiments Is Great For Beginner To Intermediate Scientists is in stock and ready to ship from Our toy stores sell Chemistry Kit W/75 Science Experiments Is Great For Beginner To Intermediate Scientists for the best price of $69.60 and personal shoppers are standing by to assist you.


Chemistry Lab Set Microchem XM 5000

Smithsonian Chemistry Lab Set Microchem XM 5000

This is the Smithsonian Microchem XM 5000 Chemistry Set. It contains over 1500 exciting experiments and procedures! This revolutionary concept uses latest technology. No glassware, alcohol burners or flames. Only micro amounts of chemicals are needed to perform experiments.

Environmentally the safest chemistry set. Experiments done in microplate. Chemicals transferred through special droppers. Chemical strengths are a fraction of regular chemistry sets. Experiments developed by top chemists. Molded plastic carrying case which opens into a laboratory workstation is included. Includes detailed educational instruction manually.


Chemistry Lab Kit Chemlab 1100

Skillcraft Chemistry Lab Kit Chemlab 1100

An introduction to chemistry featuring 1100 different experiments. Designed by Presidential Award winning science teacher. Watch your color-change experiments turn into art. Study polymers by making ChemSlime and creating super absorbent polymers. Create art through color changes with filter paper. Test foods for iron, starch and sugar. Check acid and base levels of hundreds of materials.

Test your tap water for chlorine and learn to purify water. Conduct environmental chemistry labs. Safety features include: no use of open flames, no glass containers, childproof safety caps, and environmentally safe materials. A detailed instruction booklet is included for many school science projects. For ages 12 and up with adult supervision.

CHEM C2000 

Chemistry Science Kit

CHEM C2000 Chemistry Science Kit

CHEM C2000 is a complete introduction to the most important topics in chemistry. Discover how fascinating the world is when you know the chemistry behind how everyday things work. Understanding chemical reactions turns the ordinary occurrences around us into remarkable events. You will start with fun experiments to learn basic chemistry principles. Build a mini fire extinguisher and float a soap-powered boat. Write with invisible ink and test colored markers on the chromatography racetrack.

CHEM C3000 

Chemistry Science Kit

CHEM C3000 Chemistry Science Kit

CHEM C3000 is the ultimate chemistry kit. By performing 360 fascinating and fun experiments in a complete and well-balanced curriculum, you will learn first-hand every fundamental principle of this essential science, and more.

Hubbard Scientific REST1 Chemistry of Esters Kit

Hubbard Scientific REST1 Chemistry of Esters Kit

By combining different organic compounds learners are able to synthetically create pleasant smelling aromas. The experiments specifically focus on the formation of five esters. Molecular models are also included so students can construct the formulas in 3D. Kit contains: enough materials for 50 students Teacher s Guide and reproducible student worksheets and MSDS. Grades 712. American Educational Products have a lead ship time of 21 days.


Young Scientists Club WH9251117 Adventure Science Series Chemistry Blast Kit

The Young Scientists Club WH9251117 Adventure Science Series Chemistry Blast Kit

Young Scientists create sticky ice remove gas from soda and make a flower change colors. The kit finishes with Young Scientists using test tubes filter paper and a funnel to separate a mixture of materials and making an explosion that will excite any budding scientist. For children ages 5 and up. Winner Dr. Toy 100 Best Childrens Products (2005) Dr. Toy 10 Best Educational Products (2005) Creative Child Preferred Choice Award (2006)

Up to top

Science kits  

Thames & Kosmos Physics Workshop Is A Wonderful And 

Exciting Science Kit W/305 Pieces

Thames & Kosmos Physics Workshop Is A Wonderful And Exciting Science Kit W/305 Pieces

Thames & Kosmos Physics Workshop Is A Wonderful And Exciting Science Kit W/305 Pieces is in stock and ready to ship from Our toy stores sell Thames & Kosmos Physics Workshop Is A Wonderful And Exciting Science Kit W/305 Pieces for the best price of $46.77 and personal shoppers are standing by to assist you.

Physics Pro Advanced Physics And Science Kit W/213 Pieces Is Great 

For The Classroom Too

Physics Pro Advanced Physics And Science Kit W/213 Pieces Is Great For The Classroom Too

Physics Pro Advanced Physics And Science Kit W/213 Pieces Is Great For The Classroom Too is in stock and ready to ship from Our toy stores sell Physics Pro Advanced Physics And Science Kit W/213 Pieces Is Great For The Classroom Too for the best price of $94.47 and personal shoppers are standing by to assist you.

Thames & Kosmos Physics Solar Workshop Science Kit Teaches All About 

The Sun

Thames & Kosmos Physics Solar Workshop Science Kit Teaches All About The Sun

Thames & Kosmos Physics Solar Workshop Science Kit Teaches All About The Sun is in stock and ready to ship from Our toy stores sell Thames & Kosmos Physics Solar Workshop Science Kit Teaches All About The Sun for the best price of $53.73 and personal shoppers are standing by to assist you.

Discovery Pak Physics Kit W/Gyroscope, Prism, And 


Discovery Pak Physics Kit W/Gyroscope, Prism, And Magna-Trix

Discovery Pak Physics Kit W/Gyroscope, Prism, And Magna-Trix is in stock and ready to ship from Our toy stores sell Discovery Pak Physics Kit W/Gyroscope, Prism, And Magna-Trix for the best price of $15.42 and personal shoppers are standing by to assist you.

MiniLabSlime Lab 


MiniLabSlime Lab Kit

When is science fun? When its gross!Open this kit and learn about the scientific world of slime. Make 5 different kinds of slime.

Meteor Rocket meteor rocket kit

Meteor Rocket meteor rocket kit

A new concept in rocketry Baking soda and vinegar powered rocket streaks to 100 ft. high. The secret to the Meteor's power is its ingredients that start a chemical reaction that propels the Meteor upward. A special fueling module adjusts the power to the right level for young flyers or advanced rocket scientists. Everything you need to build the Meteor is included - except for the glue. For pre-teens to adults (adult supervision required for younger children).

Star Rocket Science Kit kit

Star Rocket Science Kit kit

The Scientific Explorer Star Rocket streaks skyward up to 300 feet at unbelievable speedsIt?s the latest advancement in Scientific Explorer?s patented baking soda and vinegar rocket technology. This powerful flyer has been carefully engineered for maximum performance thrills.The experiments are a great introduction to chemistry and physics. You?ll find out whether balsamic vinegar makes better fuel than regular vinegar, and you can test different fin and fuselage configurations for optimum aerodynamics. It?s an unforgettable flying experience.The Star Rocket takes only a few minutes to assemble and you can launch it again and again For ages 8+

Weather forecast equipment  - Wheather forecast units that contain equipment like thermometers, barometers, chronograph clocks, rain sensors, humidity sensors, wind measurers and computing electronics to calculate forecasts and show the results.

Wonderful Weather Wizards from LiveScience Store!

Orion astronomy equipment - Equipments to look at and take pictures of celestial objects and whole celestial sceneries.

Orion StarShoot AutoGuider and Deep Space Camera

Up to top



Good sources of RC models

Good radio controle vehicle model shops - Your Source for RC Toys

Up to top


What is chemistry?

About chemical bonds and structures

Our world is made from atoms. Atoms consist of a kernel consisting again  of positively charged protons and uncharged neutrons, and a cloud of surrounding negatively charged electrons moving about the kernel. Positive and negative charges attract each other, and therefore an atom is hold together.

However, it is possible for electrons to be situated in such a way between atoms that they attract the kernal of two or more atoms. Such electrons will attract the atoms together.

Some atoms attract by themselves electrons, so that the atom gets negatively charged. Other atoms by themselves pull electrons away, and get positively charged. A negatively and a positively charged atom will attract each other.

These two attractment effects, alone or blended together, can effectively bind two or more atoms together, or making a chemical bond. Usually a bond consists of two electrons making an attraction effect.

Units of atoms bound together are often just small and equally composed. If so the units of atoms bonded together are called molecules. In other cases they can be larger, but still equally sized and composed. These will also usually be called molecules.

In other cases, the units are composed of atoms arranged in a regular fashion, but can be of any size, and are most often very great with billions of atoms in each unit. Techically such units are giant molecules, but they are usually called crystals, or corns or something similar. A diamant is a typical example of such giant molecule or crystal. Metals are also composed of such crystals, and these are usually called corns if small and crystals if great.

Even though a compound consist of small equally sized molecules, these mulecules can glue together in a regular fashion and make objects with a regular shape. Such objects are also called crystals. An example is a sugar crystal.

And crystals can glue themselves together to even greater objects, like for example stons in rocks.

There are several kinds of bonds:

Covalent bonds: In such a bond, the shared electrons are equally distributed between the atoms.

Polar covalent bonds: By these bonds, one atom attract electrons by itself to some degree and another repels electrons by itself to some degree. The atoms then get some degree of opposite charges and will attract each other by an ectrostatic forc. Electrons will also to some degree situate themselves between the two kernels and attract both the two atom  kernels, and also this way bond the atoms together.

Ion bonds: Here on of the atoms repell some electrons totally by itself, and the other attracts the same electrons totally. The electrons will not be shared, but the positively sharged atom and the negatively charched atom will attract each other.

Metallic bonds: Here electrons are free to move around many atoms in a crystal, and will often be situated between the kernels. They thus hold the atoms together, and because they can move around, they can lead electric current.

Hydrogen bonds: A hydrogen atom usually produce polar covalent bonds with the hydrogen becomming positive. A hydrogen atom in a chemical structure is therefore attracted to atoms in other structures that are positive after forming a polar covalent or ion bond. This attraction aan be so graet that the two structures are glued together. This type of nond is called a hydrogen bond. Basically also other pairs of positive and negative atoms can make such bonds, but they are especuially common with hydrogen.  The atoms that attract hydrogen this way is often oxygen.


Physical states or aggregate states of substances

The chemicals that react during a chemical process and the result of the process can be in several physical conditions, or aggregate conditions, of which the main types are solids compounds, liquids or gasses

Solid compounds: In a solid compound, the forces between the molecules or atoms are so strong that the molecules are held together in one piece, and the molecules or atoms are locked against each other so that a piece keeps its form even though it is influenced by external forces, as long as the force does not exceed a certain size characteristic of the compound.

Solid compounds - chrystalline: If the binding forces in a solid compound lock the molecules or the atoms toogether in a regular fashion, the comound is called chrystalline.

Liquids: In a liquid the forces between the molecules are great enough to keep the molecules of a substance to escape away from each other, but the forces do not lock the molecules rigidly against each other, so the molecules can easily slide between each other. Therefore a liquid does not keep a  permanent shape and will float out on a surface because of the gravitation.

Gasses: In a gas there are not enough forces between the molecules to hold them together. Any pressure or external force will keep a piece of gas to inflate and go apart in all directions. Therefore a gas must be held in a locked container or something acting like a container. The air is a gas, and this gas is held in place around the earth by gravity.

Plasmas: A plasma is a gas where electrons are broken out from the atoms or molecules and hover between the atoms or molecules. The molecules or atoms are then positively charged because they have more protons in the kernels than electrons in the shells around the kernel.  Plasmas are most often produced by very high temperatures. Because the negative electrons tend to attract the positive constituents, a plasma is often held together as one piece, even though the constituents can move freely around in the plasma and the plasma do not have any specific shape.

This simple theory of matter conditions is an over-simplified picture. Many things in nature and daily life behave in a way that is different from this description. For example a thread or a piece of fabric that behave nearly as a liquid upon forces in some directions and as a very solid thing upon forces in other directions so that a piece allways is held together and so that the topography of the piece allways is intact. The topography of an object describes what parts of an objects that are fastened to each other.

Anoter example of a thing that neither is a liquid nor a solid in the strict sense is a robber band. It can be stretched until a certain limit, but at that limit it behaves very much like a solid object, and the topography of the rubber band is allways intact, but apart form this, the rubber band does not have a permanent form.



About chemical reactions

During a chemical reaction chemical bonds are broken, and then new bonds are formed between the broken pieces of the original molecules. But usually new bonds are formed between other pieces than those hold together originally. Thus new compounds are formed.

In order to brake bonds, energy must be supplied.  The atoms or molecular pieces bound together have usually less energy than the atoms not bound. Therefore a chemical structure can only be splitted with the supply of energy. The energy gives power to overwhelm the attractive forses in the bonds. The energy can be supplied by heat, by light or by electricity, dependent upon the type of reaction. It can sometimes also be directly supplied from other molecules that undergo a simultaneous reaction.

Then new bonds are formed by the free atoms or free molefcular pieces, so that elements broken free are again combined to new molecules or other structures. In that process energy is released in form of heat, in form of emited light, as electric current or the released energy is transfered directly to other molecules.

In the over-all process the release of energy druing formation of new bonds can be greater that the energy needed to break the original bonds.  If the released energy is greater than the energy supplied to break the original bonds, the reaction produces net enery. Such a reaction will produce heat, light or an electric current. Such reactions will often proceed by themselves when it has begun because released energy can be used to break new bonds. Such a reaction is called exoterm. If an exotherm reaction is strong enough, it will produce glowing materials because of the heat, for example glowing gasses. Such a result of a reaction is commonly callled fire.

Other reactions need more energy to break the original bonds that the energy released when new bonds are formed. Such a reaction must allways have a continuous supply of energy to proceed. Such reactions are called endoterm reactions.

During a chemical reaction, the reacting the substance can change aggregate state in a lot of ways. Solids liquids or gasses can produce both solids, liquids and gasses as a product, or something that cannot be described as neither of these.

When a reaction occur so that products are formed, the opposite reaction will olso occur. The two oppsite reactions will however occur at differents speeds. At some poit there has been formed so much of the product, that the opposite reaction form the products back to the original substances occur equally much as the reaction forewards. At that point the system is in equilibrium and from that point on there will be no change in the ratios of products and original substances. Some reactions go far ahead so that there will be nearly no original substances left at equilibrium and some reactions do not go long before there will not be any net change in the blending any more. The  products can however be taken away during the reaction, and then the process can continue until there are no otiginal reactant left. This occur for example when if the product is damped off or go up in the air because they are gasses.



About oxidation, reduction and fire

Originally oxidation simply denoted a process where oxygen makes bond with another substance. One used to say that the other substance got oxidized.

Reduction originally ment freeing a substance from a bond to oxygen. An example is the reduction of metal ore to make free metals.

When oxygen makes bonds, electrons tend to be pulled towards the oxygen atom so that the oxygen gets negatively loaded, and the other substance positively loaded. When oxygen bonds another substance, polar covalent or ionic bindings are thus formed.

Nowadays the term oxydation  is used in a wider sense. Oxidation is defined as any chemical process that results in electrons being pulled away from  an atom. This atom is said to be oxidized.

Reduction is defined as any chemical process in which elactrons are pulled towards an atom so that the atom gets negatively loaded.

Reduction and oxidation allways occur together, when one atom gets reduced, another gets oxidized. A process where reduction or oxidation occur is called a redox-process.

In the special case where oxygen binds to a substance, the substance is oxidized and oxygen is reduced.

Another special case is when a halogen, as for example chlorine, binds to some substance. The substance is also then oxidized, and the halogen is reduced. Clorine can for example bind to hydrogen to form HCL, or hydogen chloride, or chlorine can bind to the metal sodium to form NaCl or ordinary salt.

When two substances bind together in a redox-process, much energy tend to be released as heat. The heat can be so intense that the blending of substances begin to glow.

If a chemical process releases so much energy that the products are glowing, and some or all of the products are gasses, these glowing gasses will pour out from the reaction site and ascend up into the air. Such glowing gasses comming out of some process are called flames.

Any chenical or physical process that produces great amount of heat is called combustion, especially when the products of the process are simpler than the raw materials that go into the process.

Fire is glowing substances let out from such a process, especially when some of the substances are  glowing gasses, or flames. In daily spech also the whole process is often called fire, instead of combustion.

When two substances of which one is in an oxidized state and the other in a reduced state, shall be separeted, much energy must usually be supplied, usually in the form of heat or electricity.

Such an example is when a free metal shall be produced from the ore. Then the ore must be heated, so that the binding between the oxidized metal and the reduced substance (usually oxygen) can be broken.  In addition a helping substance (a so-called reducer)  that the can take over the binding and thus be oxidixed instead is usually necessary. Carbon is often used as such a substance in the production of metals.


About chemical methods

When one intends to bring about a chemical reaction and harvest the resulting products, one generally use a specific sequence of steps.

First one has to measure up the right quantity and proportion of all reactants either by volumetric measurements or by veighting.

Then the reactants are blended in some kind of vessel or container.

Fore some exotherm reactions the blending itself is anough for the reaction to start, but generally one has to supply energy to start it and keep it running. This is done by heating, by letting an electric current go through the blending or by illuminating it with ordinary light or special frequencies.

Sometimes one also adds special helper substances to the blending, so called catalysts. A catalyst will take part in the reaction by dividing the reaction in two or more steps that easily occur, and thereby the overall reaction coours more easily. The helper substance will not be consumed or altered after the reaction.

Then the reaction products must often be separated and purified. If one of them is a gas, it can simply be led avay by holding the reaction vessel closed and have a tube leading the gas to another container. If one or more of them are liquids, those can be destilled out leaving solid products or less volantile liquids back in the original vessel. Products you do not want to keep can sometimes be damped off leaving the valuable products left. Sometimes it is possible to wash out one of the products with water or another solutant. Sometimes it is possible to make a product precipitate to the bottom of a container by adding salt. Sometimes you can burn away products you do not want to keep and thereby purifying the valuable parts.

The separation of the end products and the purification is often the most complicated part of a chemical process, and must often be done in several steps.

Up to top


What is physics?

Physics is the sicence about the basic building blocks in the nature, the elementary particles. It is also the science of the most basic properties of matter. Such properties are mass, charge momentum, and elementary particles properties called charm, color and spin.

It is also the science about the forces in the nature and the laws gowerning their behaviour. These forces work on both the cosmological level, the everyday macroscopic level, the microscopic level and the elementary particle level.

A force is actually an event that leads to the exchange of energy between two particles, so that one of them loose velocity and the other gain velocity. Forces in the opposite direction can however work against each other so that the net energy exchange dimmishes or is zero.

The forces are of many kinds, for example gravity, electromagnetic force, strong force and weak force. In dayly life only electromagnetic forces and garvity are directly observed. The other forces belong to the elementary particle world only because they only work over a short distance.

A certain force can only work between tho objects if the objects have the same special kind of propery. Mass makes it possible for two objects to attract each other with gravity. Electric charge is necessary for electromagnetic force. Some forces exist in two or theree variants, for example exists the electromagnetic charge as negative and positive charges. The chrarge of particles interacting determines the direction of the force. The same charge effect repulsing force, opposite charges result in attracting force.

These forces are basically the same at all the size levels, but certain aspects of them have most impact on the cosmological level and high energy level and certain of them have most impact on very small scales.

It is very impractical to take concideration of all the aspects every time you have to compute some force and their result, and one has not yet managed to develop any theory that take into concideration all aspects simultanously. Therefore one usually applies theories that only take into concideration the most important aspects.

On very large scales, great velocities and on very great anergy levels one uses the theory of relativity. On everyday calculations one uses Newtonian physics that is the most simple of them. On the elementary particle level quantum mechanics is the theory used.

The theory of relativity takes into concideration the relativistic aspects. These tell that such things as length, time and mass appear to change when the velocity of an observed object is very great. Length contracts according to the measures, time slows and the mass increases and goes to infinity when the velocity approches the velocity of light. Therefore no object can reach or exceed the velocity of light according to the standard theory of relativity.

Quantum mechanic tells that the forces are statistic. No exchange of energy is certain to happen, but has only a certain chance that vary from situation to situation. Also it is not possible to know exactly where an object is, there is only a chance for the object to exist at certain places, but varying from place to place. Some places are however very probable and other very unlikely. This statistic behaviour is however mostly observed at the elementary particle level. At greater levels, the chances of of the results from all the elementary particle the object conssists of sums to a nearly certainty of observing a force with a certain strength and observing the object at one particular place.

When the situation gradually changes from those where relativistic and quantum effects are easily found to the scales observed at everyday situations, the results calculated from the theory of relativity and quantum mechanics gradually appoach the results one can obtain from Newtonian mechanics.

Up to top